Convergence of Bergman measures for high powers of a line bundle

نویسنده

  • ROBERT BERMAN
چکیده

Let L be a holomorphic line bundle on a compact complex manifold X of dimension n, and let e be a continuous metric on L. Fixing a measure dμ on X gives a sequence of Hilbert spaces consisting of holomorphic sections of tensor powers of L. We prove that the corresponding sequence of scaled Bergman measures converges, in the high tensor power limit, to the equilibrium measure of the pair (K,φ), where K is the support of dμ, as long as dμ is stably BernsteinMarkov with respect to (K,φ). Here the Bergman measure denotes dμ times the restriction to the diagonal of the pointwise norm of the corresponding orthogonal projection operator. In particular, an extension to higher dimensions is obtained of results concerning random matrices and classical orthogonal polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Szegö Kernel on an Orbifold Circle Bundle

The analysis of holomorphic sections of high powers L of holomorphic ample line bundles L → M over compact Kähler manifolds has been widely applied in complex geometry and mathematical physics. Any polarized Kähler metric g with respect to the ample line bundle L corresponds to the Ricci curvature of a hermitian metric h on L. Any orthonormal basis {SN 0 , ..., S dN} of H(M,L ) induces a holomo...

متن کامل

On the Asymptotic Expansion of Bergman Kernel

We study the asymptotic of the Bergman kernel of the spin Dirac operator on high tensor powers of a line bundle.

متن کامل

N ov 2 00 5 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS

We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...

متن کامل

Ja n 20 05 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS

We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...

متن کامل

N ov 2 00 4 GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS

We study the near diagonal asymptotic expansion of the generalized Bergman kernel of the renormalized Bochner-Laplacian on high tensor powers of a positive line bundle over a compact symplectic manifold. We show how to compute the coefficients of the expansion by recurrence and give a closed formula for the first two of them. As consequence, we calculate the density of states function of the Bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008